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A B S T R A C T

The integration of renewable energy sources into power grids introduces critical challenges related to stability and oscillatory behavior. In
addition, electromagnetic oscillations, particularly low-frequency oscillations (LFOs), significantly impact grid reliability. Dynamic Mode
Decomposition (DMD) methods provide valuable insights into these phenomena, identifying frequency and damping modes from electrical
system measurements. In this study, we rigorously compare various DMD variants—namely, svdDMD, augDMD, fbDMD, tDMD, and rDMD—
regarding their accuracy, noise robustness, and computational efficiency. Our evaluation employs a modified IEEE 39-bus test system
incorporating pumped storage hydropower plants and wind power. The findings assist power system operators in selecting optimal methods
for electromechanical oscillation analysis, ultimately enhancing grid stability and resilience.
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1. Introduction

In the swiftly changing landscape of energy systems, the incorpo-
ration of renewable energy sources presents significant challenges
to the stability and dependability of power grids. As the global
community experiences an increase in non-programmable renewable
energy sources, operators of electric systems are obliged to reeval-
uate the security and robustness of power systems. This paradigm
shift highlights the crucial role of sophisticated monitoring systems,
especially in the context of oscillatory behaviors that can threaten the
stability of interconnected networks.

A common electromechanical phenomenon affecting power sys-
tems is inter-area oscillation, which appears as oscillatory transients
between remote generation systems. These oscillations, with fre-
quencies typically ranging from 0.1 to 0.7 Hz, can lead to frequency
oscillations on the transmission grid. The repercussions of inadequate
damping in these oscillations can be drastic, potentially initiating
cascading events and resulting in extensive blackouts [1].

To tackle these challenges, implementing Phasor Measurement
Units (PMUs) in Wide-Area Monitoring Systems (WAMSs) offers
real-time measurements of voltage and current phasors, frequency,
and other signals. The WAMS, when combined with innovative
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data-driven methods, provides an effective approach to analyze low-
frequency oscillations and promptly detect critical operating condi-
tions.

Among the various data-driven methods, Dynamic Mode Decom-
position (DMD) stands out as a potent tool for oscillation analysis.
Originating from fluid dynamics, DMD has proven its efficiency in iden-
tifying dynamical modes and their spatial and temporal characteristics.
This technique has gained rapid popularity, and a recent method,
Augmented DMD (augDMD) [2] has been proposed by integrating the
ideas of the standard DMD with Takens’ theorem to achieve significant
improvements in prediction when the time complexity exceeds the
spatial complexity of a dynamic system. However, challenges and
limitations are also presented. The sensitivity of DMD to noise has
led to several modifications to enhance robustness against noise,
such as forward-backward DMD (fbDMD), and total DMD (tDMD) [3].
Furthermore, Randomized DMD (rDMD) [4] aims at reducing compu-
tational complexity during the pre/post-processing stages of handling
big data.

DMD was introduced to power systems, demonstrating its effec-
tiveness for the modal analysis of electromagnetic oscillations, and
identifying dynamical modes and their spatial and temporal charac-
teristics [5–7].

As we traverse the complexities of the energy transition, the in-
tegration of renewable energy sources requires not only enhanced
monitoring capabilities but also advanced methodologies, such as



2 Ramón Daniel Rodríguez-Soto et al.: Comparative Study of Dynamic Mode Decomposition Approaches for Electromechanical . . .

DMD, to ensure the stability and resilience of power grids in the face
of dynamic challenges. This work delves into a comparative study of
the applications of DMD and the significance of monitoring oscilla-
tions, particularly inter-area oscillations, and improving monitoring
efficiency.

2. Techniques of Dynamic Mode Decomposition

Dynamic Mode Decomposition (DMD) is a data-driven method-
ology that finds its roots in the theory of the Koopman operator [8].
Initially developed for fluid dynamics by Schmid [9], DMD has demon-
strated its adaptability in breaking down complex flows into coherent
space-time structures. The technique excels in pinpointing Koopman
modes from spatio-temporal data, where each mode embodies a
distinct frequency and growth rate, signifying a non-linear extension
of the global eigenmodes discovered in linear systems [10].

The essence of DMD is the local approximation of a dynamic system
with a linear system. This is characterized by a system’s state vector
x ∈ Rm linear discrete time-invariant dynamic system with sampling
time ∆t, correlates with the subsequent state xk+1 ∈ Rm through:

xk+1 = F(xk) (1)

where F ∈ Rm×m is the optimal DMD linear operator matrix, for
k = 1, . . . , n− 1. The subsequent right eigenvector and continuous
eigenvalues of F are represented as φφφk and λk = exp (ωk∆t) re-
spectively, provide insights into the system’s dynamics [11], as seen in

x(t) =ΦΦΦexp (Ωt)a (2)

where the components of ΦΦΦ ∈ Cm×m are the dynamic modes of the
system and Ω ∈ Cm×m are the continuous eigenvalues matrix of F. In
contrast, the coefficients a ∈ Cm×1 represent the coordinates of the
initial value x(0) in the base of the eigenvectors.

The practical application of DMD in a dynamic system involves
organizing spatially distributed measurements collected at distinct n
time instants, each ∆t, into what are often referred to as snapshot
matrices X1 ∈ Rm×n−1 and X2 ∈ Rm×n−1 given by

X1 =













x1,1 x1,2 . . . x1,n−1

x2,1 x2,2 . . . x2,n−1

...
...

...

xm,1 xm,1 . . . xm,n−1




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





(3)

X2 =
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x1,2 x1,3 . . . x1,n

x2,2 x2,3 . . . x2,n
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
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(4)

Thus, the approximation of (1) can be rewritten as:

X2 = FX1 (5)

Hence, the matrix F is determined through the relation

F= X2X†
1 (6)

leveraging the Moore-Penrose pseudoinverse X†
1. The acquired knowl-

edge of F facilitates modal analysis, revealing the dynamic modes
and associated parameters without relying on the explicit dynamical
equations of the system.

DMD’s significance lies in its sole reliance on data, eliminating
the need for a priori knowledge of the system’s dynamics. Several

DMD variants, such as Augmented DMD (augDMD) [2], forward-
backward DMD (fbDMD) [3], total DMD (tDMD) [3] and Randomized
DMD (rDMD) [4], among others, have emerged in recent years. These
variants have found applications in diverse fields, including power
systems and the monitoring of electromagnetic oscillations [5–7]. The
subsequent sections delve into the mathematical foundations of these
DMD variants for computing the eigenvalues and eigenvectors of
the linear operator, offering a comprehensive understanding of their
practical implementation.

2.1. Orthogonal Projection in DMD Operator

The standard DMD algorithm, also known as Exact DMD, computes
a finite-dimensional operator that maps each column of X1 to its
corresponding column in X2 as per (5). This technique, grounded
in Singular Value Decomposition (SVD), forms the foundation for
computing the F DMD operator. The SVD decomposition applied to
X1 results in

X1 = UΣVT (7)

where U ∈ Rm×m and VT ∈ Rm×n represent the left and right singular
vectors respectively, along with the diagonal singular matrix Σ ∈
Rm×m.

Substituting (7) into (6) yields the following equation

X̂2 = FUrΣrV
T
r (8)

F is the approximation matrix that shares identical eigenvalues and
eigenvectors with the complete behavior of the dynamic system. As
per the literature, the following expression provides a representation
of F in the base covered by the left singular vector modes of the
sequence X:

F̂= UT FUT = UT X2VΣ−1 (9)

Computing the eigendecomposition of F̂

F̂W=WΛ (10)

where the columns of matrix W ∈ Cm×m are the eigenvectors, and
Λ ∈ Cm×m is a diagonal matrix containing the eigenvalues λ j of F̂.
Therefore, the DMD modes are given by

Ψ= XW (11)

Φ= X2VΣ−1W (12)

where Ψ are projected DMD modes and Φi are referred to as exact
DMD modes, Ψ and Φi are equivalent when X1 and X2 span the same
∆t. If φ j ̸= 0, (5) may be utilized to determine the dynamic mode of
F̂ associated with the k-th zero eigenvalue λk = 0. Alternatively, (6)
should be used.

2.1.1. SVD Decomposition Derived DMD
Eigendecomposition of the low-dimensional system matrix, F, pro-

vides an insightful explanation of system dynamic behavior; assuming
the operator F is diagonalizable can be obtained from the modal
decomposition by substituting (9), the following expression

F=WΛW−1 = UT X2VΣ−1 (13)

Using (1), that can be approximated by a linear combination of the
DMD modes, multiplying on the left by U and on the right by ΣVT ,
the resulting reconstructed matrix X2 rec as

Xsvd
rec = UWΛW−1ΣVT = ΦΛΓ (14)
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where Φ ∈ Cm×m reflects the spatial term of the system’s dynamic and
the structure Γ ∈ Cm×m denotes the temporal evolution of the modes
of the system, the technique described above is known as svdDMD.

For the identification of damping ρ j and frequency f j associate to
mode φ j can be depicted from eigenvalues λ j the following transfor-
mation procedure is employed:

ρ j =
ℜ(λ j)

∆t
, f j =

ℑ(λ j)
∆t
2π

(15)

Alternatively, due to the spatial structure of the dynamic of the
system associated with the modes of the system described as φ j , the
normalized magnitude of each mode ∥φ j∥ can be used to determine
the participation factor associated with each mode at instant t. The
existing groups can be visualized with similar dynamic behavior using
the phase ∠φ j .

2.2. Estimation of DMD Operator via Augmented Matrix

The Augmented Dynamic Mode Decomposition (augDMD) algo-
rithm extends the Exact Dynamic Mode Decomposition (DMD) method
by integrating time-delay embedding and data stacking techniques.
This process involves the formation of an augmented data matrix
Xaug, which has an increased row dimension due to the stacking of X
from (1) and (2). The data matrix is augmented using a shift stacking
and time delay matrix, drawing inspiration from the Hankel matrix
in the Eigenvalue Realization Algorithm (ERA), leading to a more
precise solution. The augmentation not only improves the accuracy
of the solution but also expands the dimension of the measurement
matrix, enabling the capture of additional data information. The
augmented data matrix, which combines turn stacking and time
delay, is represented as:

Xaug
1 =













x1 x2 . . . xn−s

x2 x3 . . . xn−s+1

...
...

. . .
...

xs xs+1 . . . xn−1













(16)

Xaug
2 =













x2 x3 . . . xn−s+1

x3 x4 . . . xn−s+2

...
...

. . .
...

xs+1 xs+2 . . . xn













(17)

Here, Xaug
1 ,Xaug

2 ∈ R
m·s×n−s, where s represents the time shift, and an

increment in m captures phase information for a pair of eigenvalues
linked with dynamic oscillations if m is limited to m << n. Aug-
mented matrices allow for the application of the DMD procedure to
estimate the operator F in (2), resulting in the following expressions:

Xaug
1 = UΣVT (18)

Faug = UT Xaug
2 VΣ−1 (19)

DMD on augmented matrices Xaug
1 and Xaug

2 provides the eigen-
values λ j ∈ Λaug and modes Φaug. The exact dynamic modes were
obtained from (12).

Using (2) with continuous eigenvalues ω j , it is possible to recon-
struct a matrix Xrec given as

Xaug
rec =ΦΦΦaug exp (Ωaug t)a (20)

where a are the coefficients obtained from a = x j,1ΦΦΦ
−1
aug. As the

columns of Φaug are stacked s times, their dimensions are significantly
larger than the original measurements. Thus, the current-state DMD
modes must be extracted from Φaug by retrieving the first m rows.

2.3. Forward-Backward Dynamic Mode Decomposition

The Forward-Backward Dynamic Mode Decomposition (fbDMD)
is an extension of the DMD algorithm that aims to approximate the
cancellation of noise in the data and reduce error by calculating
the low-rank linear operator as the square root of the product of
the operators for forward and backward evolution. This method is
expected to yield superior results with higher precision in computing
eigenvalues and eigenvectors compared to the conventional DMD
method.

The fbDMD comprises two primary steps: Forward DMD and
Backward DMD. In the Forward DMD, two observation matrices, X1

and X2, are considered, which are taken at different time snapshots.
The SVD factorization of X1 can be expressed as follows

X1 = UΣVT (21)

The projected data matrices are calculated as

X̃1 = UX1 (22)

X̃2 = UX2 (23)

The decomposition of the matrices X̃1 and X̃2 can be expressed
as

X̃1 = U1Σ1VT
1 (24)

X̃2 = U2Σ2VT
2 (25)

The transformation matrix formed from the forward computation is
denoted by F f . The dynamic mode is computed by taking the matrix
formed from the succeeding time intervals, hence the term ‘forward’
DMD. In this step, X̃2 is used to estimate the transformation matrix by
considering the results of the SVD of X̃1. The matrix F f is considered
to share the same eigendecomposition as F, and can be expressed as

F̃ f = UT
1 X̃2V1Σ

−1
1 (26)

The Backward DMD is analogous to the Forward DMD technique,
with the major difference being the backward computation of the
transformation matrix. In this case, X̃2 is the snapshot matrix which
is factorized through SVD rather than X̃1. X̃1 is rewritten using the
modified X̃2. From these considerations, the similar transformation
matrix using the backward time shifts is obtained as

F̃b = UT
2 X̃1V2Σ

−1
2 (27)

Here, Fb is the transformation matrix formed from the backward
computation, hence the term ’backward’ DMD.

Finally, by using Forward-DMD and Backward-DMD, F is computed
as

F=
q

F f F
−1
b (28)

The matrix F is the computed transformation matrix used to find
the dynamic mode matrix ΦΦΦ as follows:

ΦFB = X2VΣ−1W (29)

The eigenvalue decomposition of F gives the DMD damping and
frequencies. From the results obtained, the damping and angular
frequencies can be calculated using the logarithmic mapping of the
eigenvalues described in (15). Finally, the reconstructed matrix
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is obtained in (30) from the dynamic mode matrix ΦΦΦFB and the
continuous eigenvalues ΩFB .

XFB
rec =ΦΦΦFB exp (ΩFB t)a (30)

2.4. Total Dynamic Mode Decomposition (tDMD)

The Total Dynamic Mode Decomposition (tDMD) method is primar-
ily applied in noise-dominated scenarios. It addresses noise mitigation
by aligning two shifted data sequences, X1 and X2, representing
snapshots of a signal [3]. X1 is assumed to be noise-affected, while
X2 is considered noise-free. Through a least-squares approach, DMD
seeks a linear correlation between the snapshots, treating X2 as the
reference. This asymmetric relationship forms a total least-squares
problem [12]. Stacked data is initially formed as:

Z= [X1 X2]
T (31)

The problem is addressed by projecting X1 and X2 onto the optimal
r-dimensional subspace using SVD, enhancing spectral information
extraction:

X̃2 = X1V (32)

X̃2 = X2V (33)

If X̃1 undergoes SVD:

X̃1 = UrΣrV
T
r (34)

then the DMD operator matrix F is determined as:

F= UT
r X2VrΣ

−1
r (35)

F characterizes the system’s behavior, leading to exact dynamic
mode matrix ΦT computation similarly as (12). Damping and fre-
quency are then obtained from (13). Ultimately, the reconstructed
matrix Xrec with continuous eigenvalues is defined as follows:

XT
rec =ΦΦΦT exp (ΩT t)a (36)

2.5. Randomized Dynamic Mode Decomposition (rDMD)

The Randomized Dynamic Mode Decomposition (rDMD) integrates
a randomized methodology into the conventional DMD approach [4].
The core concept is to employ randomness as a computational tool
to derive a compressed representation, referred to as a "sketch."
This condensed matrix sketch serves as the basis for computing an
approximate low-rank factorization of the high-dimensional data
matrix. The rDMD exploits established probabilistic techniques to
compute the optimal orthonormal basis Q using the randomization
strategy [13].

Given a target rank r ≪min(m, n), the objective is to find a nearly
optimal basis Q ∈ Cm×r for the input matrix X ∈ Rm×n satisfying the
relation:

X≈ QQT X (37)

where H= QT X, and H ∈ Rr×n serves as the representation of X. To
accomplish this, a test matrix Υ ∈ Rm×r is generated from a standard
Gaussian distribution to sample the range of X, projecting the original
high-dimensional data onto a random matrix:

Z= XΥ (38)

Here, Z consists of linearly independent vectors spanning the range
of X. To ensure that the column space of Q spans X adequately, the
desired range r is slightly oversampled by a constant factor p repre-
senting additional samples, typically p = 10 [13]. Consequently, the

matrix Ψ ∈ Rm×l is redefined, where l = k+p. The QR-decomposition
is then employed to obtain the desired basis Q:

Z= QR (39)

To enhance performance, power iterations can be applied as an
alternative approach. Power iterations preprocess the input matrix
to promote a faster decay of the singular value spectrum, thereby
improving the quality of the approximated basis matrix Q. The
resulting sampling matrix is given by:

Z= (XXT )qXΥ (40)

where q represents the number of power iterations. Even a small
number of power iterations (e.g., q = 2) can significantly enhance
the approximation quality, particularly for input matrices with slowly
decaying singular values.

Once the matrix Q is obtained, DMD is performed in the reduced-
dimensional space. The low-dimensional snapshots H are aggregated
into overlapping matrices H1 and H2. Subsequently, applying the SVD
procedure in (7) estimates the operator F similarly as (9), resulting
in:

H1 = UΣVT (41)

F= UT H2VΣ−1 (42)

Finally, eigendecomposition is implemented to obtain the system
eigenvalues and eigenvectors, enabling the extraction of continuous
eigenvalues ΩR, and DMD modes ΦΦΦR as described in (12), and then
the damping and frequency are obtained similarly to (15). The
reconstructed matrix is then obtained following (2) as

XR
rec =ΦΦΦR exp (ΩR t)a (43)

3. Results

This section explains the ability of the different DMD techniques
to analyze electromechanical oscillation in the modified IEEE 10-
machine 39-bus system, with pumped storage hydropower plants
(PSHP) based on doubly fed induction machine (DFIM) known as
variable speed and Doubly-fed induction generator (DFIG) wind
power simultaneously connected to bus 30 (100 MW wind power and
243 MW PSHP) [14] implemented in DIgSILENT PowerFactory. The
experiments are verified using matrix X obtained from the voltage
magnitude of each generator, affected by a fault at bus 22 (t = 10
to 10.15 s) with a sampling frequency fs = 100 Hz. Fig. 1 illustrates
the time series of the voltage magnitude of the nine generators, the
voltage of the PSHP, and wind power. The results of the evaluations
are compared between DMD methods to highlight the most efficient
technique on three pivotal aspects: reconstruction accuracy, noise
robustness, and computational cost. The different DMD algorithms
were coded in MATLAB and executed on a computer with 16 GB of
RAM and a 3.6 GHz Intel Core i5 processor.

3.1. Accuracy Assessment of DMD Reconstruction
The accuracy assessment of DMD algorithms involves a comparison

between the original data matrix, denoted as X, and its reconstructed
counterpart, Xrec. Specifically, we focus on the voltage magnitude
time series stored within the data snapshot matrix, along with the
associated eigenvectors. The reconstruction error is quantified as the
discrepancy between X and Xrec. Mathematically, the reconstruction
percentage error is estimated using the relative norm of the Frobenius
error:

Percentage error=
|X−Xrec|F
|X|F

× 100% (44)
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Fig. 1. Voltage magnitude of each generator from IEEE 10-machine 39-bus
system.

In this study, the impact of noise levels on the matrix X was
investigated in time windows of 6s (t=11 to 17s). Specifically, X was
subjected to varying signal-to-noise ratio (SNR) conditions, spanning
a range of 50 dB to 30 dB for all DMD methods to compare accuracy
between techniques.

The difference between tDMD and rDMD methods and the other
techniques is that the svdDMD, augDMD, and fbDMD methods recon-
struct the snapshot X with all the eigenvalues whereas the tDMD and
rDMD methods use only the optimum r eigenvalues for the recon-
struction of the snapshot data in this work. These findings emphasize
the impact of noise levels on DMD performance and provide insights
for practical applications in electromechanical oscillation analysis.

Reconstruction error between the DMD methods as a function of
the noise are compared with each other and listed in Fig. 2. The
reconstruction error increases as the number of the noise is increased
up to 30dB. The reconstruction error from the svdDMD, augDMD,
and fbDMD methods is appreciably lower than that of the tDMD and
rDMD methods, for all the nivels of noise. It implies that the svdDMD,
augDMD, and fbDMD techniques provide higher accuracy than the
DMD and rDMD approaches in predicting frequencies and modes
applied to the conditions of this system.

3.2. Frequency and Damping Analysis

In this analysis, we compared the frequency and damping coeffi-
cients in a no-noise condition of the dominant resonant mode found by
the DMD methods, which is listed in Table 1. The damping coefficient
represents the rate of growth or decay of oscillations and is closely
linked to the stability of the system. Negative damping coefficients
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Fig. 2. Reconstruction comparison of DMD approaches for 30 of noise.

correspond to stable oscillations, while positive coefficients indicate
unstable oscillations.

The svdDMD, augDMD, and fbDMD approaches provide better
results in obtaining the LFOs frequencies when compared to tDMD
and rDMD methods, and are shown in Table 2 for noise condition
scenarios. In pursuit of capturing the utmost spatial and temporal
intricacies inherent in noisy signals, we turn our attention to matrices
that approach square dimensions. Specifically, when a matrix exhibits
near-square properties, SVD becomes a powerful tool for extracting
dominant characteristic frequency components. Consequently, the
augDMD method, which operates on larger matrices, demonstrates
improved performance in estimating both frequency and damping
with shift-stacking s = 20.

3.3. Computational time comparison

The comparative analysis of the computational efficiency of various
DMD methods is presented. Specifically, it focuses on its computa-
tion time when applied to the case study under consideration. The
results are summarized in Fig. 3. Among the DMD variants, augDMD
exhibits a longer calculation time. This increased computational
cost can be attributed primarily to the augmented matrix X process
and the subsequent projection calculations required to obtain the
operator F. Notably, the methods that initially project onto the X1

and X2 matrices, such as rDMD and tDMD, also incur the highest
computational overhead as a consequence to find the optimum rank,
r.

4. Conclusion

Ensuring grid stability is critical for efficient power transmission
and secure grid operation. Achieving stability necessitates vigilant
monitoring and effective mitigation of inter-area oscillation modes.
Therefore, robust and efficient techniques are necessary.

In this study, we investigated the application of DMD techniques
to analyze inter-area oscillations in a modified 39 IEEE bus system.
Our investigation focused on on three critical aspects: reconstruction
accuracy, noise robustness, and computational cost. Notably, employ-
ing the data change stacking technique led to improved accuracy by
augmenting the data matrix for the aaugDMD method. However, it is
crucial to recognize that the selection of the stack number can impact
the emergence of spurious frequencies.

Despite the inherent robustness of methods such as fbDMD, tDMD,
and rDMD against noise, their performance remains constrained by
the size of the data stack required for accurate modal parameter
estimation. Conversely, fbDMD, tDMD, and rDMD exhibit shorter
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Fig. 3. DMD algorithm computational time comparison
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Table 1. Dominant frequency f (Hz) and damping ρ.

svdDMD augDMD tbDMD rDMD fbDMD

f ρ f ρ f ρ f ρ f ρ

0.657 −0.340 0.6467 −0.482 0.657 −0.340 0.657 −0.348 0.660 −0.342

Table 2. Frequency f (Hz) and damping ρ in noise conditions.

Noise svdDMD augDMD tDMD rDMD fbDMD

dB f ρ f ρ f ρ f ρ f ρ

50 0.692 −0.357 0.669 −0.363 0.690 −0.477 0.692 −0.467 0.678 −0.388

40 0.605 −0.466 0.638 −0.378 0.659 −0.479 0.605 −0.477 0.650 −0.404

30 0.594 −0.432 0.619 −0.382 0.507 −0.510 0.483 −0.432 0.637 −0.592

computational times compared to augDMD. Our findings underscore
the necessity of incorporating the data stacking matrix into each tech-
nique to further enhance performance, leveraging the mathematical
framework that permits such modifications. However, judicious stack
number selection remains pivotal for achieving optimal results.
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